Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 268: 115676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979355

RESUMEN

Plastic pollution has emerged as a global challenge affecting ecosystem health and biodiversity conservation. Terrestrial environments exhibit significantly higher plastic concentrations compared to aquatic systems. Micro/nano plastics (MNPs) have the potential to disrupt soil biology, alter soil properties, and influence soil-borne pathogens and roundworms. However, limited research has explored the presence and impact of MNPs on aquaculture systems. MNPs have been found to inhibit plant and seedling growth and affect gene expression, leading to cytogenotoxicity through increased oxygen radical production. The article discusses the potential phytotoxicity process caused by large-scale microplastics, particularly those unable to penetrate cell pores. It also examines the available data, albeit limited, to assess the potential risks to human health through plant uptake.


Asunto(s)
Ecosistema , Plásticos , Humanos , Plásticos/toxicidad , Transporte Biológico , Plantones , Suelo
2.
Environ Res ; 217: 114844, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403653

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Biodegradación Ambiental , Fluorocarburos/análisis , Agua , Bioacumulación , Suelo/química , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Pollut Res Int ; 30(55): 116538-116566, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35680750

RESUMEN

Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.


Asunto(s)
Ecosistema , Suelo , Humanos , Agua , Plantas , Biodegradación Ambiental
4.
Heliyon ; 8(3): e09094, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35309390

RESUMEN

Phenolic compounds are plant secondary metabolites that play a vital role in plant resistance. They are mainly synthetized from the amino acid L-phenylalanine, which is converted to trans-cinnamic acid in a series of biochemical reactions. These compounds take part in the regulation of seed germination and cooperate in regulating the growth of plants, also taking part in defense responses during infection, UV exposure, injuries, and heavy metal stress. The aim of this review is to discuss the role of phenolic compounds in the interactions of plants with various stress factors, both biotic and abiotic with special attention to their antioxidant properties. Therefore, understanding the biochemical potential of the phenylpropanoid derivatives would be beneficial in sustaining the metabolic processes used by plants to thrive and endure under adverse conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...